Казалось бы, о свойствах света мы знаем уже больше, чем нужно, однако ученые обнаружили ранее неизвестный способ взаимодействия света с веществом. Оказывается, такой материал, как кремний, на первый взгляд, скудный по своим оптическим свойствам, может излучать свет в ответ на видимое излучение, если его определённым образом обработать. Это открытие может помочь заметно улучшить, например, солнечные батареи, светодиоды и полупроводниковые лазеры.
Исследователи выяснили, что фотоны могут получать значительный импульс, аналогичный импульсу электронов в твердых материалах, когда они ограничены в наноразмерных пространствах в кремнии. Хотя ученые знали об этом явлении десятилетиями, точное происхождение свечения было предметом споров.
Это явление аналогично явлению комптоновского рассеяния. В 1923 году Артур Комптон обнаружил, что гамма-фотоны обладают достаточным импульсом для взаимодействия со свободными или связанными электронами, доказав, что свет обладает как волновыми, так и корпускулярными свойствами. В новых экспериментах ученые показали, что импульс гораздо менее мощного по сравнению с гамма-излечением видимого света, ограниченный нанокристаллами кремния, производит аналогичное оптическое взаимодействие в полупроводниках, что раньше считалось невозможным.
Понимание природы этого взаимодействия требует возврата к работам индийского физика Ч.В. Рамана, который в 1928 году безуспешно пытался повторить эксперимент Комптона с видимым светом из-за существенной разницы в импульсах электронов и видимых фотонов. Тем не менее, его исследования неупругого рассеяния в жидкостях и газах привели к открытию колебательного эффекта Рамана и спектроскопии, получившей его имя.
Новое открытие фотонного импульса в разупорядоченном кремнии связано с формой электронного рамановского рассеяния, которое, в отличие от обычного колебательного, включает различные начальные и конечные состояния электрона - явление, ранее наблюдавшееся только в металлах.
Это открытие бросает вызов нашему пониманию взаимодействия света и вещества, подчеркивая критическую роль импульса фотонов. В разупорядоченных системах согласование импульсов электронов и фотонов усиливает взаимодействие - аспект, ранее связанный только с высокоэнергетическими гамма-фотонами в классическом комптоновском рассеянии. В конечном счете, это исследование прокладывает путь к расширению применения оптической спектроскопии за пределы традиционного химического анализа в область структурных исследований. Это открытие позволит повысить эффективность устройств преобразования солнечной энергии и светоизлучающих материалов, включая те, которые ранее считались непригодными для излучения света. Будущее оптоэлектроники выглядит ярким!
Исследование
👾 Подписаться на SciOne 👾
#новости